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A B S T R A C T   

On November 18–19, 2019, the Immunity of Canadians and Risk of Epidemics (iCARE) Network convened a 
workshop in Toronto, Ontario, Canada. The objectives of the workshop were to raise the profile of sero- 
epidemiology in Canada, discuss best practice and methodological innovations, and strategize on the future 
direction of sero-epidemiology work in Canada. In this conference report, we describe the presentations and 
discussions from the workshop, and comment on the impact of the COVID-19 pandemic on serosurveillance 
initiatives, both in Canada and abroad.   

1. Introduction 

On November 18-19th, 2019 the Immunity of Canadians and Risk of 
Epidemics (iCARE) Network convened a workshop in Toronto, Ontario, 
Canada with participation from Canadian and international experts. The 
iCARE Network is a research group that seeks to answer questions 
related to population immunity to vaccine-preventable diseases. The 
objectives of the workshop were a) to raise the profile of sero- 
epidemiology in Canada, b) discuss best practice and methodological 
innovations, and c) strategize on the future direction of sero- 
epidemiology work in Canada. Workshop participants included Pro-
vincial and Federal public health officials, Canadian and other National 
Immunization Technical Advisory Group (NITAG) members, re-
searchers, and representatives from industry and funding agencies. The 
workshop received financial support from the Canadian Association for 
Immunization Research and Evaluation, the Canadian Immunization 
Research Network, and the Canadian Institutes of Health Research. This 
report summarizes the workshop, including the case studies and exam-
ples that were presented by speakers, and participant discussion. It is 
notable that the COVID-19 pandemic erupted shortly after the workshop 
took place, further amplifying the importance of the serosurveillance 
themes that were discussed. 

Sero-epidemiology is a multidisciplinary method used to estimate 
population immunity or exposure to infectious diseases [1]. Blood 
specimens are collected from a representative sample of a population 
and tested for antibodies to the pathogen being investigated. Epidemi-
ological analyses, including prevalence proportions and regression 
models, and mathematical modelling can then be applied to the data [2]. 
Repeated or periodic sero-epidemiologic studies are often referred to as 
serosurveillance. 

Serosurveillance can be used to monitor infectious disease trends and 
evaluate public health policies. It is commonly used to estimate 
population-level immunity to a wide range of vaccine-preventable dis-
eases [2]. National serosurveillance programs have existed for several 
decades in some countries including the United Kingdom (UK), which 
was one of the first jurisdictions to implement a program in 1986/7; 

across Europe; in Australia and in the United States (US) [2]. The World 
Health Organization (WHO) recommends that regular serosurveys be 
performed for pathogens including hepatitis B, tetanus, diphtheria, 
dengue, measles and rubella [3–6]. Most recently, as part of the WHO 
Measles and Rubella Strategic Framework 2021–2030, serosurveys for 
measles and rubella were recommended as a potential action to improve 
surveillance and identify immunity gaps [7]. 

2. Use of sero-epidemiology 

Speakers presented the infrastructure, priorities and funding models 
of sero-epidemiology programs in various jurisdictions, which were 
either considered core public health surveillance activities, or funded by 
research grants. Despite different funding sources and positioning 
within public health systems, these programs all shared the overall goals 
of measuring population immunity to infectious diseases (with a focus 
on vaccine-preventable diseases), evaluating interventions, and opti-
mizing vaccine policy [2]. 

United Kingdom: The UK was one of the first jurisdictions to perform 
routine serosurveys and has used them since the 1980s to inform public 
health policy, evaluate the burden and changes in the epidemiology of 
disease, and gather data ahead of the introduction of vaccine programs 
[8,9]. The UK uses residual sera for its serosurveillance program, col-
lecting specimens annually from National Health Service and UK Health 
Security Agency (formerly called Public Health England) laboratories 
that approximate the demographics of the general population. Partici-
pating laboratories collect aliquots of residual serum leftover from 
diagnostic testing, with accompanying age (or date of birth, if available), 
sex, and date of specimen collection [8,,10]. As early as the mid-1990 s, 
this program demonstrated its value when measles population seros-
urveys revealed substantial susceptibility in school-aged children [11]. 
This resulted in a large catch-up measles-mumps-rubella (MMR) vacci-
nation campaign for all children aged 5–16 years in 1994, followed by 
the introduction of a second MMR dose in 1996 [9]. These activities 
substantially increased measles immunity in the birth cohorts of concern 
and may have mitigated a large outbreak [12]. Although the UK 
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serosurveillance program was initially focused on measles, mumps and 
rubella, it was later extended to other infections of public health 
importance, including diphtheria, hepatitis A and B, and Herpes virus 
infections (varicella-zoster virus (VZV), herpes simplex virus 1 and 2, 
Epstein Barr virus), parvovirus B19 [9,13–16]. 

The Netherlands: Serosurveillance is one of the pillars of the 
Netherlands’ National Immunization program. In contrast to the resid-
ual sera sampling approach in the UK, The Netherlands has been con-
ducting serosurveys using a population-based study design since the 
1990s, under the “Pienter” program [17–19]. This methodology utilizes 
a two-stage cluster sampling technique to draw a national sample rep-
resenting all age-groups and regions, with oversampling of newcomers 
and in areas with known low vaccination coverage [20]. Individuals are 
recruited using an invitation letter. In addition to collecting data and 
serum specimens, participants can also consent to collection of other 
specimen types, additional data, and to the retrieval of medical history. 
The Pienter study has been conducted approximately decennially for 
every pathogen included in the National Immunization Program, in 
addition to other targets, depending on surveillance need. Results have 
been used to monitor the immunization program and inform the Dutch 
NITAG about insufficient herd immunity, duration of vaccine protec-
tion, and outbreak response. Examples of successful interventions 
include seroprevalence studies of VZV, which informed the initiation of 
a varicella immunization program in the Caribbean Netherlands [20,21] 
and a sero-epidemiology study that identified vulnerable age-groups for 
a catch-up human papilloma virus (HPV) vaccination in 2009 [22]. A 
measles serosurvey found that antibodies in infants born to vaccinated 
mothers dropped below the level of protection earlier than infants born 
to mothers immune through previous wild-type infection [23]. 

The European Sero-Epidemiology Network (ESEN): ESEN was initiated 
in 1996 as a time-limited endeavour funded by the European Union, 
with the aim of coordinating serological surveillance of vaccine- 
preventable diseases across Europe, and establishing methodologies to 
evaluate vaccine programs across borders [24,25]. ESEN initially 
included several Western European countries and covered measles, 
mumps, rubella, diphtheria and pertussis [26], expanding to 22 coun-
tries in 2001 for the ESEN2 survey, and also including varicella and 
hepatitis A and B [14]. Since countries used varying specimen collection 
and laboratory methods, ESEN validated standardization panels to allow 
the generation of standardization equations [14,24,27] to enable inter- 
country comparability. 

United States: Like the Netherlands, the US utilizes a population- 
based study design conducted through the US National Health and 
Nutrition Examination Survey (NHANES), which uses multi-stage 
probability sampling to collect data and several types of biological 
specimens (blood, urine, cervicovaginal swabs and oral samples) from 
nationally representative cohorts [28]. Sero-epidemiology targets for 
these surveys are comprehensive, and have included measles, mumps, 
rubella, varicella, tetanus, diphtheria, viral hepatitis and sexually 
transmitted infections, among others [28–32]. One of the most signifi-
cant accomplishments of the survey has been to uncover increased 
prevalence of hepatitis C antibody in persons born between 1945 and 
1965 (baby boomers), directly resulting in policy change in 2012 with 
the addition of one-time screening for individuals in this age-group, in 
addition to already existing risk-based screening policy [33]. 

Canada: In Canada, sero-epidemiology studies have historically been 
supported by independent research, such that serosurveys are conducted 
on an ad hoc basis rather than programmatically. The iCARE Network 
has devoted considerable energy to validating antibody detection 
methods specific for vaccine-preventable diseases, including reference 
testing that was not previously available in Canada [34,35]. The first 
sero-epidemiology studies tested both provincial-level residual sera 
from Ontario as well as nationally representative sera obtained from the 
Canadian Health Measures Survey (CHMS), which is conducted bien-
nially by Statistics Canada [36–38]. Specimens were tested for anti-
bodies against measles and varicella. A comparison of results revealed 

similar estimates for both measles and varicella, suggesting that residual 
specimens, which are easier to access than CHMS specimens, are 
adequate for estimating population immunity to these diseases [38]. In 
addition to iCARE-led surveys, serosurveys were conducted through an 
academic partnership with the Public Health Agency of Canada using 
prenatal specimens, estimating immunity against rubella and pertussis 
[39,40]. Separately, Ontario and Alberta have conducted rubella 
serosurveys [41,42]. 

Low and Middle Income Countries (LMICs): In these settings, seros-
urveys serve both to inform supplementary immunization activities, and 
as an additional surveillance tool in areas with limited vaccine coverage 
data [43–45]. These roles were demonstrated by the Strengthening 
Immunization Systems through Serosurveillance group led by re-
searchers at Johns Hopkins University, with studies in Northern Vietnam 
and Kenya [46,47]. This group also demonstrated the feasibility and 
utility of serosurveillance in LMICs to assess measles and rubella im-
munity gaps, evaluate vaccination campaigns, estimate outbreak risk 
and vaccine control strategies, and test alternative specimen types. For 
example, one study nested a serosurvey within a post-campaign evalu-
ation survey and found that in Zambia, rubella seroprevalence estimates 
overall were 97.7%, but were lower than desired at 91.3% in adolescents 
and young adults [45]. The study also found that all estimates exceeded 
vaccine coverage estimates, likely due to immunity through wild type 
infection and underreporting of vaccination. Another study performed 
in Madagascar underscored the ability of serosurveys to identify im-
munity gaps in older populations in LMICs [43]. This is important 
because these groups are not always identified as susceptible by 
coverage data, which don’t always focus on all age-groups. Furthermore, 
migration can result in historical coverage data becoming obsolete. 

The Centers for Disease Control and Prevention (CDC) Centre for 
Global Health, Global Immunization Division has been instrumental in 
supporting LMICs in conducing serosurveys. A 2012 serosurvey in 
Cambodia included targets such as tetanus, measles, rubella, polio, and a 
variety of viral and parasitic pathogens amongst women of childbearing 
age. The survey found high (96%) measles seropositivity [48] which 
helped verify measles elimination, despite ongoing outbreaks [49]. 
However, tetanus immunity gaps in women age 15–24 in some regions 
of Cambodia were detected, informing Cambodia’s 2015 maternal and 
neonatal tetanus elimination validation. Immunity gaps were also found 
for polio and rubella [48], and a seroprevalence of > 45% was detected 
for Strongyloides, which was previously unknown [50]. The Bill and 
Melinda Gates Foundation has also been a driving force supporting 
serosurveys in LMICs. In collaboration with the CDC, it funded a 
serosurvey for neglected tropical diseases in Kenya, Tanzania and 
Mozambique. This survey found a tetanus immunity gap in adult men in 
Kenya and Tanzania, and less so in Mozambique [51]. This work 
contributed evidence to recommendations for tetanus risk mitigation 
and a change in the WHO-recommended tetanus vaccination schedule 
[52,53]. Although not specifically discussed in our meeting, other ex-
amples exist of serosurveys in sub-Saharan Africa to assess epidemic risk 
and inform public health programming [54,55]. 

3. Methodological considerations and innovations 

The group discussed methodological considerations for designing 
and implementing serosurveys, including the target population(s), lab-
oratory methods, specimen type and source, and data analysis consid-
erations. These factors can also contribute substantially to study cost and 
feasibility. Although not specifically discussed at the iCARE meeting, it 
should be noted that a clear correlate of antibody-mediated protection 
may not be available for all pathogens, which presents a significant 
limitation on interpretation of serosurveys [56,57]. 

Specialized laboratory methods: Sero-epidemiology studies often use 
rapid and high throughput enzyme immunoassays (EIAs) for assessment 
of antibody titres. Recently, the use of multiplex bead-based EIAs has 
increased [34]. Although technical knowledge is required for assay 
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creation (if a commercial kit is not used) and validation, multiplexed 
bead-assays can test multiple antigens simultaneously using small vol-
umes of specimen at a markedly reduced cost [58]. Countries are 
increasingly using multiplexed EIAs to obtain more useful data with 
fewer resources and to permit cost-sharing between programs. For 
example, the US has been using these assays for vaccine-preventable 
diseases, vector-borne diseases, and water and food borne diseases 
[58]. The CDC has been actively supporting technology transfer of 
multiplex bead assays to LMICs (as mentioned above) in Africa, Asia and 
The Americas [48,50,51]. The Netherlands has also used multiplex bead 
assays extensively, often multiplexing in a manner closely matched to 
vaccine programs (for example, combining measles-mumps-rubella and 
varicella, or diphtheria tetanus and pertussis). In Canada, the iCARE 
Network has implemented a multiplex bead assay for measles, mumps, 
rubella and varicella, after validating it for off-label use to provide 
quantitative antibody titres [34,59]. One challenge with laboratory 
studies is cold chain maintenance during collection, shipment and 
analysis of samples. This has driven interest in the development of so- 
called “point of care” diagnostics that can provide EIA results at the 
site of specimen collection. Lateral flow assays (LFA) have been a pop-
ular choice for this application [60,61], but there is growing interest in 
more sophisticated systems that can provide the same information with 
“laboratory-quality” results [62,63]. 

Although EIAs have become the backbone of sero-epidemiology 
programs, this method has well-known limitations. EIAs are usually 
designed for diagnostic purposes rather than for serosurveillance, such 
that they produce qualitative results (i.e. immune, non-immune, 
equivocal), and focus on specificity rather than sensitivity [34,64–66]. 
However, population immunity is often not bimodal, since individuals 
can have varying antibody levels depending on infection and/or vacci-
nation status, and antibody waning [64,67]. Sero-epidemiology studies 
benefit from quantitative antibody measures to allow for a more 
nuanced characterization of immunity [34,64]. This is particularly true 
for specimens with low antibody levels, and therefore EIAs may have 
decreased accuracy when testing populations with a high proportion of 
equivocal or low-positive individuals, which is often the case with 
vaccinated populations [36]. To address these issues, EIAs used for 
serosurveillance are sometimes supplemented with reference testing. A 
commonly used reference method is the plaque reduction neutralization 
test. Although costly and labour intensive, the use of neutralization tests 
is an asset in populations with low or moderate antibody levels that are 
often reported as non-immune by EIAs, thus raising the reported level of 
immunity [36,38,68]. These additional testing considerations may be 
easy to implement in developed countries, but may not be feasible in 
underdeveloped countries. Moreover, EIA platforms may present 
maintenance challenges for developing countries, where support from 
manufacturers may be difficult to obtain. 

Specimen sources: Specimens for sero-epidemiological studies can be 
obtained through population-based sampling using study volunteers 
(the US and The Netherlands [9,17]), which allows for the collection of 
additional information beyond basic demographic data. However, this 
method can be costly and may introduce a selection bias towards more 
affluent or healthy individuals [69], and study recruitment response 
rates are sometimes low [19]. Convenience sampling using residual 
specimens (used in the UK and some parts of Europe) is less labour- 
intensive and more cost-effective, but less information can be 
collected about participants, including individual-level vaccination 
status. Furthermore, residual specimens collected for occupational 
health or prenatal screening may be biased towards healthy individuals, 
while specimens collected for microbiological or biochemical testing 
may be biased towards those with comorbidities. Comparisons between 
specimen sources suggest that they can produce similar estimates, at 
least for infections which circulate widely or for which a considerable 
proportion of the general population has antibodies, such as measles, 
mumps, hepatitis B or varicella [70]. Studies of measles immunity in 
Ontario, Canada performed by the iCARE Network using these different 

approaches generated very similar estimates overall and by age-group 
[36]. 

Specimen type: While historically, serum specimens were used for 
sero-epidemiology studies, using alternative specimen types can be ad-
vantageous in some circumstances. For example, finger prick-based dry 
blood spots on filter paper are less invasive and stable for long periods of 
time, and are often comparable to results from venous blood specimens 
[71]. Oral fluid samples are another safe, non-invasive specimen type, 
that has a high patient acceptability profile [72]. Oral fluid samples have 
been shown to contain antibody levels at lower concentration than in 
serum, but have been proved useful and comparable to serum for 
measuring antibodies to human immunodeficiency virus (HIV), Human 
T-lymphotropic virus (HTLV), hepatitis A and B virus, rubella virus and 
parvovirus B19, although sensitivity depends on the antibody target and 
test used [72–74]. Oral fluid/saliva samples have been used both diag-
nostically and for surveillance purposes in the UK for measles by 
measuring IgM levels, which have been shown to have an adequate 
sensitivity of 92% compared to serum samples [75,76]. A study in 
Ethiopia aimed to assess whether oral fluid could replace serum in 
serosurveys by testing paired blood and oral fluid samples from 853 
participants for antibodies against hepatitis B core antigen, rubella and 
measles [77]. Sensitivity and specificity were 43% and 87% for anti- 
hepatitis B core antigen, 79% and 90% for rubella, and 98% and 87% 
for measles. These results suggested that while oral fluid may be an 
adequate specimen source for serosurveillance in some circumstances, 
technical aspects including variation in assay performance and methods 
standardization needs further attention [77]. Since oral fluid/saliva 
sample quality can sometimes be inconsistent, commercial collection 
devices can facilitate more standardized specimen collection [71,72]. 

Mathematical modelling: Sero-epidemiological data has been used to 
parameterize mathematical models as part of jurisdictional sero- 
epidemiology surveillance activities and in stand-alone research 
[78,79]. In England, mathematical models using serological data indi-
cated that the reproductive number of measles would increase above 1 
in school-aged children by 1995, resulting in a resurgence of measles 
with a predicted 100,000 – 200,000 cases and 30–60 deaths [11]. This 
triggered a vaccination campaign for school-aged children later that 
year, and the policy decision to introduce a second vaccine dose in 1996. 
Cross sectional age-specific serosurvey data can also be used in a cata-
lytic mathematical model to understand the current risk of susceptibility 
by age-group. For example, a time-varying catalytic model was used to 
assess measles immunity in China, taking into account changing force of 
infection due to supplemental vaccination activities, finding regional 
differences [80]. Del fava and colleagues used Bayesian mixture 
modelling to assess herd immunity to measles in Italy, and the impact of 
a catch-up vaccination campaign for school aged children in the Tuscany 
area in 2004 – 2005 [67], and to assess varicella susceptibility in Nor-
way [64]. Mixture modelling is particularly useful for modelling popu-
lation susceptibility to infections for which there is no reliable correlate 
of protection, such as mumps [9]. 

4. Measuring exposure to emerging pathogens 

Several speakers presented results from ad-hoc serosurveys designed 
to evaluate exposure and/or immunity to emerging diseases are an 
important means of predicting the burden of disease. For example, 
during the 2009 influenza H1N1 pandemic, the UK performed large 
serosurveys before and after each pandemic wave to better understand 
age-specific background immunity to the pandemic strain, as well as 
seroprevalence after each pandemic wave. These findings were used to 
predict transmission patterns and inform optimal pandemic vaccine 
policy [81,82]. Similarly, in Canada, a mixture of residual specimens 
and a prospective cohort were used to measure seropositivity at points 
during the H1N1 pandemic in order to assess community transmission 
(as many cases were mild, and did not present for healthcare), identify 
risk factors for infection, and evaluate the antibody response in 
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vaccinated individuals [83]. Results from both countries indicated that, 
while children and younger adults were susceptible to the new pandemic 
strain, older adults had previous cross-protection. 

Serosurveys were also useful in Northeastern Brazil during the Zika 
epidemic [84] using a combination of residual sera and prospective 
sampling. Testing revealed increasing seroprevalence of antibodies to 
Zika virus in 2015–2016, with a higher burden of disease in areas of low 
socio-economic status. Sera were also tested for antibody to dengue and 
Chikungunya viruses, allowing comparison of the spread of Zika virus to 
that of other arboviruses spread by the Aedes mosquito, which emerged 
in the Americas at roughly the same time. A study in the State of Rio de 
Janeiro in 2018 found that much of the population was still susceptible 
to Zika infection, although the test used in this study was not specific, 
making interpretation of results challenging [85]. Lastly, a seropreva-
lence study of Brazilian blood donors from the Northeast region of São 
Paulo State, was conducted before and after a 2016 Zika outbreak. The 
study used an EIA followed by PRNT confirmation of EIA positive 
samples, and found a seroprevalence of 5.3%, 12.8% and 13.2% in 2015, 
2016 and 2017, respectively [86]. In addition to potential issues with 
representativeness due to the use of blood donor specimens, the authors 
pointed out the studied geographical region may have had lower Zika 
incidence compared to other areas in Brazil. 

In addition to informing public health as new pathogens emerge, 
studies can also be performed to estimate the burden of infections with 
unknown or changing epidemiology. For example, the burden of Lyme 
disease in Canada is unknown and rapidly changing as the climate 
warms. An analysis of seroprevalence in Nova Scotia, Canada, of anti-
bodies against Borrelia burgdorferi, the bacteria that causes Lyme dis-
ease, found a seroprevalence of 0.14% using specimens collected in 
2012 [87]. Another example is hepatitis. In addition to the above- 
mentioned US NHANES serosurvey, Canadian study groups have per-
formed several hepatitis B and C serosurveys. An Ontario study of 
hepatitis C antibody in baby-boomers demonstrated higher seropreva-
lence in individuals born between 1950 and 1964 compared to younger 
and older adults [88], and a national CHMS hepatitis B and C serosurvey 
found lower seroprevalence overall, albeit in a study population that is 
likely not representative of those infected [89]. A study of hepatitis E in 
England conducted using specimens collected in 1991 and 2004 found a 
seroprevalence estimate of 13.0% and 13.5% for each time period, 
respectively [90]. Seropositivity increased with age, and was associated 
with being male and living in the South of England. 

5. Future plans and recommendations 

The meeting also included strategic planning for the iCARE Network, 
and discussion of strategies to raise the profile of sero-epidemiology in 
Canada. While in some jurisdictions sero-epidemiology studies are a 
core part of infectious disease surveillance, serosurveys have historically 
been viewed as research in Canada. This is in contrast with WHO 
recommendation to conduct serosurveys for a variety of pathogens. The 
lack of familiarity with sero-epidemiology in some Canadian research or 
public health circles has led to chronic underfunding of serosurveys. 
However, Workshop members agreed that the iCARE Network has 
demonstrated that sero-epidemiology studies are valuable from both 
research and surveillance perspectives in Canada. In addition, the iCARE 
Network has built a national infrastructure to carry out serosurveys, and 
has tackled methodological questions related to specimen sourcing and 
laboratory assays required to carry out studies in the Canadian context. 
Recently, the Network has developed a methodology to link data from 
individuals’ residual sera to health administrative databases to explore 
variables such as vaccination status, socio-economic status, and immi-
gration status, among others. This approach allows the use of residual 
sera while still obtaining plentiful individual subject-level data. 

Serosurvey programs in many other jurisdictions are core funded by 
public health programs, allowing them to perform work pre-emptively 
and not reactively, and contribute to public health policy. The group 

agreed that this would be optimal in Canada, too, and a single funding 
source would be ideal. To raise the profile of sero-epidemiology na-
tionally, the Network should continue to make efforts to engage stake-
holders and leverage interest in serosurveys. These stakeholders include 
Provincial and Territorial public health agencies and/or Ministries of 
Health; the Federal Public Health Agency of Canada; Funding bodies 
such as the Canadian Institutes of Health Research; and Industry. In 
particular, there would be value in underscoring the benefits of sero- 
epidemiology studies for public health, and the opportunity for Can-
ada to be innovators in this field. One challenge that was identified was 
that, since healthcare in Canada is a provincial/territorial prerogative 
rather than federal, there are many stakeholders, each with its own set of 
priorities and limitations. 

6. Epilogue 

Since the conclusion of our meeting in November 2019, we have 
weathered the COVID-19 pandemic and a resulting shift in the scope, 
interpretation, and value of serological data for understanding and 
controlling the spread of infectious diseases. Shortly after the iCARE 
Workshop, many participants mobilized in 2020 to conduct SARS-SoV-2 
serosurveys in their jurisdictions, either by leveraging and extending on 
existing infrastructure like in the Netherlands [91], or with new seros-
urvey infrastructure like the US [92,93]. Unlike countries with pre- 
existing infrastructure, SARS-CoV-2 serosurveillance efforts in Canada 
were highly reactive. De-novo serosurveys were funded by the COVID- 
19 Immunity Task Force, the Canadian Institutes of Health Research, 
and others using new specimen sources that were previously untapped. 

Canadian serosurveillance data were instrumental to assessing the 
impact of the COVID-19 pandemic on Canadians, and to evaluating the 
public health pandemic response. It demonstrated that public health 
restrictions were effective in curbing COVID-19 transmission in the first 
wave [93,94], and that racialized groups and those experiencing ma-
terial deprivation were disproportionality affected by SARS-CoV-2 than 
other population groups [95]. During the Omicron wave, restricted PCR 
testing eligibility [96–98] resulted in difficulties assessing population- 
level infection incidence. This made serosurveillance data even more 
valuable for understanding the population burden of infection. Seros-
urveillance data was also useful to model the pandemic and predict 
future transmission trends [99]. Despite these successes, the reactive 
nature of these initiatives impacted the timeliness of results, which often 
lagged behind reporting from jurisdictions like the UK, where routine 
serosurveillance systems were in place pre-pandemic. 

These efforts underscore the need for programmatic serosurveillance 
funding in Canada. It has become clear that a serosurveillance program 
with sustained funding would provide great value in supporting public 
health surveillance, both routinely and in a pandemic. Leveraging the 
lessons learned from COVID-19, there is great opportunity to highlight 
the strengths of serological data and sero-epidemiological studies, and 
leverage pandemic-era advancements in the Canadian serosurvey 
landscape towards routine and sustainable surveillance post-pandemic. 
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